Java Cryptography

Jeff Lawson

Copyright © 2013 Cogent Logic Ltd.

Copyright © 2013 Cogent Logic Ltd., United Kingdom

www.cogentlogic.com

This document constitutes the notes for the presentation Java Cryptography and is made
available for personal use by presentation attendeed. No part of this document may be
reproduced, stored in a retrieval system, or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording or otherwise, or translated into any
language, without the prior written consent of Cogent Logic Ltd.

Copyright © 2013 Cogent Logic Ltd.

Presentation Contents

1 Introduction to Cryptography

2 Cryptographic Service Providers

3 Symmetric Key Cryptography

4 Symmetric Key Cryptography for Android and i0S
5 Asymmetric Key Cryptography

6 Digital Signatures

7 Authenticated Encryption

Copyright © 2013 Cogent Logic Ltd.

8 Digital Certificates

9 PKI

10 Key Stores and Trust Stores

11 SSL and TLS (JSSE)

12 Accessing LDAP Servers with JNDI

13 Certificate Revocation Lists and OCSP

14 Privilege Management Infrastructure

Copyright © 2013 Cogent Logic Ltd.

Java Cryptography

Introduction to Cryptography

Jeff Lawson

Copyright © 2013 Cogent Logic Ltd.

Contents

e Cryptography
 Encryption and Decryption

e Import / Export / Domestic Laws

Copyright © 2013 Cogent Logic Ltd.

Cryptography

e Cryptography names the processes involved in:
 Keeping information confidential (secret)
e Establishing the provenance of information
e (Checking the integrity of information
e Controlling access to information

e Cryptography has become a mandatory feature of many information
processing systems

e Consumers and law courts are starting to demand that personal
information be handled securely

Copyright © 2013 Cogent Logic Ltd.

Encryption and Decryption

Encryption is the process of transforming information from a human-
intelligible form ('in the clear') to an unintelligible form (encrypted)
i.e. Data can still be read, it just cannot be understood!

Decryption is the reverse process of recovering the original clear data
from the encrypted data

Encryption processes:
e simple, e.g. Caesar

e sophisticated, e.g. Enigma machine, computational algorithm

Copyright © 2013 Cogent Logic Ltd.

Import / Export / Domestic Laws

e Many governments classify encryption technologies as munitions!
e (Consequently, there are a variety of legal ramifications to consider
when developing, importing, exporting and travelling with

cryptographic software!

e Since Java is held to originate from the U.S.A,, there are export
considerations

e Since some countries have restrictive legislation regarding import,
Java is configured for weak cryptographic keys, by default

Copyright © 2013 Cogent Logic Ltd.

The United States government prohibits export of cryptographic software,
(e.g. Java SE!) to:

Cuba, Iran, Sudan, North Korea, Syria

Additionally, the U.S. Department of Treasury prohibits dissemination of
cryptographic software to:

e Specially Designated Nationals
e Specially Designated Terrorists
e Specially Designated Narcotic Traffickers

Also, the U.S. Department of Commerce prohibits dissemination of
cryptographic software to people on:

e Table of Denial Orders

Copyright © 2013 Cogent Logic Ltd.

Many other countries control export, import and domestic use of
cryptographic software; some follow the Wassenaar Arrangement
controls the export of weapons

The United Kingdom, France, Holland, India, Thailand, Malaysia,
Singapore and Australia demand decryption

France is of particular note in having exceptional restrictions

In Switzerland, crypto import is not controlled and import certificates
will be given if the country of origin requires it; export of ‘'mass-market
and public-domain software' is not controlled but re-export is not
permitted if the country of origin does not allow the export to the
destination country

Copyright © 2013 Cogent Logic Ltd.

The number of international laws restricting cryptography is bewildering

See the Crypto Law Survey:

www.cryptolaw.org

Ultimately, legal advice may be needed

The following three images are taken from the Crypto Law Survey
web site and are used here with kind permission of Bert-Jaap Koops
Thank you, Bert-Jaap :-)

Copyright © 2013 Cogent Logic Ltd.

O no data available

O limited controls

EU & Wassenaar
controls

Wassenaar controls
(implementation varies)

. other export controls

) unclear . CRYPTO EXPORT CONTROLS
@ no export controls - (c) Bert-Jaap Koops July 2010

Copyright © 2013 Cogent Logic Ltd.

O no data available
. import controls

O limited import controls |

O unclear

. no import controls

CRYPTO IMPORT CONTROLS

{(c) Bert-Jaap Koops

Copyright © 2013 Cogent Logic Ltd.

July 2010

O no data available
. domestic controls

O lavy demanding decryption v
O small and special controls

decsrggtt::grczrinrero I2nd : % D OME ST IC C RY PTO RE GU LAT IO N S » /

O unclear (c) Bert-Jaap Koops July 2010

. no domestic controls

Copyright © 2013 Cogent Logic Ltd.

Java Cryptography

Cryptographic Service Providers

Jeff Lawson

Copyright © 2013 Cogent Logic Ltd.

Contents

JCA Cryptographic Service Providers
Available JCA Providers

Accessing JCA Providers

Enabling Unlimited Strength Cryptography
Adding JCA Service Providers

The Legion of the Bouncy Castle JCA Cryptographic Service Provider

Copyright © 2013 Cogent Logic Ltd.

JCA Cryptographic Service Providers

e [n common with many other customisable Java technologies, the
JCA/]CE uses a service provider architecture:

 Providers implement a service provider interface

e Java exposes an application programming interface that calls
into zero or more service providers through their service
provider interface

Copyright © 2013 Cogent Logic Ltd.

Application

API call for service - API response

Provider Framework

SPI call for service - SPI response

Provider

Copyright © 2013 Cogent Logic Ltd.

Available JCA Providers

Java SE is bundled with several JCA service providers: *

SUN 1.7 SunRsaSign 1.7
SunEC 1.7 Sun]SSE 1.7
Sun]JCE 1.7 SunJGSS 1.7
SunSASL 1.7 XMLDSig 1.0
SunPCSC 1.7 SunMSCAPI 1.7

These providers implement their own set of cryptographic algorithmes,
e.g. Sun]SSE has specific support for the Java Secure Socket Extension

* JRE 1.7.0_10-b18 on Windows 8

Copyright © 2013 Cogent Logic Ltd.

e To discover which providers are available, use:

import java.security.Provider;

import java.security.Security;

/] ...

Provider[] providers = Security.getProviders();
Provider provider;

for (int n=0; n<providers.length; n++)

{
provider = providers[n];
System.out.println(provider.getName() + " " +
provider.getVersion() + " : " +
provider.getInfo());
}

e Sample output line:
SunEC 1.7 : Sun Elliptic Curve provider (EC, ECDSA, ECDH)

Copyright © 2013 Cogent Logic Ltd.

To discover which algorithms are available from a provider, use:

import java.security.Provider.Service;

//

Set<Service> setServices = provider.getServices();
Iterator<Service> itServices = setServices.iterator();
Service service;

while (itServices.hasNext())

{
service = itServices.next();
System.out.println(" " + service.getAlgorithm()
+ " " + service.getType());
}

Sample output...

Copyright © 2013 Cogent Logic Ltd.

e For the Sun 1.7 provider:

SHA1PRNG SecureRandom
SHA1withDSA Signhature
NONEwithDSA Signature

DSA KeyPairGenerator

MD2 MessageDigest

MD5 MessageDigest

SHA MessageDigest

SHA-256 MessageDigest

SHA-384 MessageDigest

SHA-512 MessageDigest

DSA AlgorithmParameterGenerator
DSA AlgorithmParameters

DSA KeyFactory

X.509 CertificateFactory

JKS KeyStore

CaseExactlJKS KeyStore
JavaPolicy Policy
JavaLoginConfig Configuration
PKIX CertPathBuilder

PKIX CertPathValidator

LDAP CertStore

Collection CertStore
com.sun.security.IndexedCollection CertStor

Copyright © 2013 Cogent Logic Ltd.

e For even more information, use:

String strKey;
String strValue;
Iterator<Object> itKeys = provider.keySet().iterator();
while (itKeys.hasNext())
{
strKey = (String)itKeys.next();
strValue = provider.getProperty(strKey);
System.out(strkey + " " + strValue);

¥

e Sample output...

Copyright © 2013 Cogent Logic Ltd.

For the Sun 1.7 provider:

KeyFactory:
DSA sun.security.provider.DSAKeyFactory

ImplementedIn Software

AlgorithmParameters:
DSA sun.security.provider.DSAParameters

ImplementedIn Software
AlgorithmParameterGenerator:
DSA sun.security.provider.DSAParameterGenerator
ImplementedIn Software
KeySize 1024

Signature:
NONEwithDSA sun.security.provider.DSA$RawDSA
SupportedKeyClasses

java.security.interfaces.DSAPublicKey |
java.security.interfaces.DSAPrivateKey

Copyright © 2013 Cogent Logic Ltd.

Accessing JCA Providers

JCA providers are used implicitly or explicitly

Implicit, unspecified provider use example:
Signature sigDefault = Signature.getInstance("MD5withRSA");

Sample result: SunRsaSign provider

Oracle recommends that "General purpose applications SHOULD NOT
request cryptographic services from specific providers."

Copyright © 2013 Cogent Logic Ltd.

e The system knowns about providers that are listed in the file
<java-home>/lib/security/java.security

and those that have been loaded from code, e.g.

Security.addProvider(new BouncyCastleProvider());

* Jjava.security contains precedence numbers

e When a provider is not specified, the JCA queries each known provider
in order of precedence do discover whether the desired algorithm is
supported

e The first provider to acknowledge support for the algorithm is used by
the JCA

Copyright © 2013 Cogent Logic Ltd.

Signature.getInstance("MD5")

Application

API call for service - API response

Provider Framework

MD5 ? I no MD5 ? I yes

Sun SunRsaSign Sun]SSE

Copyright © 2013 Cogent Logic Ltd.

You may want your solutions to work with specific providers that you
trust!

Explicit, specified provider use example:
Signature sigSun]SSE = Signature.getInstance("MD5withRSA",
"SunJSSE");

When a requested provider is not found, a NoSuchProviderException
exception is thrown

When a requested provider is found but it does not support the
requested algorithm, a NoSuchAlgorithmException exception is thrown

Copyright © 2013 Cogent Logic Ltd.

Signature.getInstance("MD5", "SunJSSE")

Application

API call for service API response

Provider Framework

SunRsaSign

Copyright © 2013 Cogent Logic Ltd.

Enabling Unlimited Strength

Java SE (both JRE and JDK) comes with support for unlimited strength
cryptography but it is not enabled by default

To enable unlimited strength cryptography, download and install the
Java Cryptography Extension (JCE) Unlimited Strength Jurisdiction
Policy Files at the bottom of the Java downloads web page

The README . txt document provides instructions

Essentially: replace the files local policy.jar and
US export policy.jar In <java-home>/lib/security

Copyright © 2013 Cogent Logic Ltd.

e To test for unlimited strength cryptography, use:

byte[] data = {Ox00, 0x01l, Ox02, Ox03, Ox04, Ox05, O0x06, Ox07};
SecretKey key256 = new SecretKeySpec(new byte[]

{0x00, Ox01l, 0x02, Ox03, 0x04, Ox05, O0x06, OX07,

OX08, Ox09, Ox0A, Ox0B, 0x0C, Ox0D, OXOE, OXOF,

0x10, Ox11, ox12, ox13, ox1l4, o6x15, 9x16, Ox1l7/,

ox18, 0x19, Ox1A, ox1B, 0x1C, ox1D, ox1E, ox1F}, "AES");
Cipher cipher = Cipher.getInstance("AES/CBC/PKCS5PADDING");
cipher.init(Cipher.ENCRYPT_MODE, key256);
cipher.doFinal(data);

e Throws java.security.InvalidKeyException if unlimited strength
cryptography is unavailable

Copyright © 2013 Cogent Logic Ltd.

Adding JCA Service Providers

e JCA security providers can be added:
e As part of Java SE for all applications to use
e As part of a single application
e Adding a provider in a Java SE installation requires:

e Writing the provider's JAR file to:
<java-home>/lib/ext/

 Adding an entry to the text file:
<java-home>/lib/security/java.security

e.g. ..

Copyright © 2013 Cogent Logic Ltd.

Updated <java-home>/lib/security/java.security file:

security.
security.
security.
security.
security.
security.
security.
security.
security.
security.
security.

provider.l=sun.security.provider.Sun
provider.2=sun.security.rsa.SunRsaSign
provider.3=sun.security.ec.SunEC
provider.4=com.sun.net.ssl.internal.ssl.Provider
provider.5=com.sun.crypto.provider.SunJCE
provider.6=sun.security.jgss.SunProvider
provider.7=com.sun.security.sasl.Provider
provider.8=org.jcp.xml.dsig.internal.dom.XMLDSigRI
provider.9=sun.security.smartcardio.SunPCSC
provider.10=sun.security.mscapi.SunMSCAPI
provider.11l=
org.bouncycastle.jce.provider.BouncyCastleProvider

Copyright © 2013 Cogent Logic Ltd.

e Add providers to the bottom of the list, i.e. use the next available

precedence number, because there is a good deal of software that depends
on the default order!

 Adding a provider as part of a single application requires:
 Adding the provider's JAR file application's class path

e Loading the provider programmatically:

import org.bouncycastle.jce.provider.BouncyCastleProvider;

int nPredecence =
Security.addProvider(new BouncyCastleProvider());

Copyright © 2013 Cogent Logic Ltd.

o Typically use a static initializer so that the provider always loads before
it's needed and loads only once:

public class AddBouncyCastleProviderOnce

{
static
{
Security.addProvider(new BouncyCastleProvider());
}
public static void main(String[] args)
{
Provider provider = Security.getProvider("BC");
System.out.println((provider == null ?
"Bouncy Castle not available"
provider.getName() + " " +
provider.getVersion() + " installed"));
}

BC 1.48 installed

Copyright © 2013 Cogent Logic Ltd.

The Legion of the Bouncy Castle
JCA Cryptographic Service

e The Legion of the Bouncy Castlee cryptography software is developed
in Australia (since the year 2000) and thereby circumvents the United
States' export restrictions, though this is no longer a problem

e The BC software includes a comprehensive JCA service provider that
supports all the popular cryptographic algorithms

Copyright © 2013 Cogent Logic Ltd.

The Legion of the Bouncy Castle software can be downloaded from:

www.bouncycastle.org/latest releases.html
Choose the crypto-148.tar.gz or crypto-148.zip file to "grab the lot"!

Extract the downloaded file; the Bouncy Castle provider comprises the
file bcprov-jdk150on-148.jar * found in the jars subdirectory

* bcprov-ext-jdk150on-148.jar supports IDEA and NTRU which you
are unlikely to use, due to patent restrictions

Copyright © 2013 Cogent Logic Ltd.

Java Cryptography

Symmetric Key Cryptography

Jeff Lawson

Copyright © 2013 Cogent Logic Ltd.

Contents

Information in the Clear
Cryptography

Advanced Encryption Standard
Block Cipher Modes

Block Cipher Padding

Cipher Names

Symmetric-Key Ciphers in Java

Initialization Vectors

Copyright © 2013 Cogent Logic Ltd.

Information in the Clear

Corporate networks typically contain file servers with shares that:
e Require authentication and authorization for access
e Supply data 'in the clear’

Protocol analyzers (packet sniffers) can log data from networks: most
of this data is readily accessed, in fact it's often used for debugging

Most transmitted information is human-readable

Copyright © 2013 Cogent Logic Ltd.

Cryptography

Encryption is a process intended to make information secret and may
be achieved in several ways, e.g.

e (aesar transposition of letters
e Enigma machine
e Computational algorithm (cipher)

Symmetric key (a.k.a. secret key) cryptography uses the same key to
both encrypt and decrypt data

Virtually all encrypted data uses symmetric keys

Copyright © 2013 Cogent Logic Ltd.

Cryptographic keys:
e Are special numbers required to customize ciphers
 Longer keys produce more secure cipher-data

Attacks are attempts at compromising security made by unauthorized
agents

Weak security schemes are easily exploited,
e.g. human deficiencies such as poor key-management

Brute-force attacks cycle through each possible key-value until the
correct one is found...this might take billions of years!

Side channel attacks exploit physical characteristics
e.g. timer-based

Copyright © 2013 Cogent Logic Ltd.

Cryptographic algorithms are often called ciphers

The word cipher also refers to the data emitted by a cryptographic
algorithm

Common symmetric key ciphers:
e DES—1970s Data Encryption Standard: 56-bit
e TripleDES—three keys; used by FBI: 112- and 168-bit
e Blowfish—Bruce Schneier*: 32- to 448-bit
e Twofish—Bruce Schneier: 128-, 192-, 256-bit

e RC2/4/5/6T—Ronald Rivest: various strengths

* “Applied Cryptography” TRon’s Code

Copyright © 2013 Cogent Logic Ltd.

Advanced Encryption Standard

e Advanced Encryption Standard (AES):
e Algorithm selected by competition
e publicly disclosed encryption algorithm
e royalty-free worldwide
e Rijndael (pronounced "Reign Dahl")
e Belgian university originators, VincentRijmenand Joan Daemen
o Officially accepted 26 May 2002

e 128-,192- or 256-bit key lengths

Copyright © 2013 Cogent Logic Ltd.

The National Institute of Standards and Technology (NIST) publishes
Federal Information Processing Standards (FIPS)

AES is the official NIST successor to DES

FIPS PUB 197 describes a cipher called the Advanced Encryption
Standard (AES), developed by Belgian cryptographers, Joan Daemen
and Vincent Rijmen

FIPS PUB 197 can be downloaded from:
csrc.nist.gov/publications/fips/fipsl197/+tips-197.pdf

Copyright © 2013 Cogent Logic Ltd.

AES is a successor to the Data Encryption Standard (DES), the official
U.S. Government adopted cipher for protecting classified information

DES uses 56-bit keys,* AES uses 128-, 192- or 256-bit keys
(minimum 128-bit for SECRET, 192-bit for TOP SECRET)

DES handles blocks of 64 bits, AES handles 128 bits

* 168-bit keys for 3DES

Copyright © 2013 Cogent Logic Ltd.

Block Cipher Modes

A block-based cipher encrypts information in a single block

Attacks can look for patterns across several blocks encrypted with
the same key

To thwart such attacks, random data is introduced to add noise to
the input blocks

Such randomness is codified in a mode of operation or block cipher
mode

Copyright © 2013 Cogent Logic Ltd.

e Electronic Code Book (ECB) is the simplest cipher mode, input is
simply split into blocks and no randomness is added

e (Cipher Block Chaining (CBC) uses:

e Random data (called an initialization vector) to XOR with the
first input block

e The previous output block to XOR with the next input block
e The same process to decrypt

e Other cipher modes: Cipher Feedback (CFB), Propagating Cipher-Block
Chaining (PCBC), Output Feedback (OFB), Counter (CTR)

Copyright © 2013 Cogent Logic Ltd.

Block Cipher Padding

 Encryption algorithms typically handle data in blocks
e.g. DES uses a block size of 8 bytes,
AES uses a block size of 16 bytes

 Data that does not have a length that is a whole number of blocks must
be padded with extra bytes

e PKCS #7 is a commonly-used padding mechanism™* in which the last
1 <n < 8 bytes have a value of n
e.g. if 3 bytes of padding are required then the last three bytes will
be 3, 3, 3
(8,8, 8,8, 8, 8, 8, 8used when no padding is required!)

* Public-Key Cryptography Standard

Copyright © 2013 Cogent Logic Ltd.

Cipher Names

e The FIPS PUB 197 document provides test vectors (correct output for
a given input and key) for AES with several key lengths using ECB
mode and no padding (just a single 16-byte block)

e A cipher name is used to specify the characteristics of the desired
cryptographic operation and takes the form:

<algorithm><mode><padding>

e.g. "DES/ECB/NoPadding"
"AES/CBC/PKCS7Padding”

Copyright © 2013 Cogent Logic Ltd.

In Java, cipher objects are obtained from a factory by specifying a cipher
name and, optionally, a provider:

Cipher cipher = Cipher.getInstance("AES/CBC/PKCS7Padding",
IIBCII);

The Java documentation from Oracle recommends not specifying a
provider, thereby enabling the system to be configured independently of
an application

Most developers will want to specify a known provider in which they have
confidence!

Copyright © 2013 Cogent Logic Ltd.

A pre-defined symmetric key can encapsulated in a SecretKeySpec object

The key bit-length is implicit from the supplied byte array, e.g. 128-bit
(16 byte) key for AES

byte[] bytesFIPS197Keyl1l28 = new byte[] {0x00, 0x01l, 0x02, Ox03,
Ox04, Ox05, Ox06, Ox07,
POx08, Ox09, OxPa, 0Ox0b,
Ox0c, 0x0d, OxQe, 0OxoOf};

Key keyl28AES = new SecretKeySpec(bytesFIPS197Key128, "AES");

A Cipher object is initialized with a key and one of the following
operations:

e ENCRYPT_MODE

e DECRYPT_MODE

e.g. cipher.init(Cipher.ENCRYPT_MODE, key128AES);

Copyright © 2013 Cogent Logic Ltd.

e Encryption can proceed as one or more update() calls followed by a
doFinal() call thereby allowing repeated use of small buffers, e.g.
int nCipherLen = cipher.update(bytesFIPS197PlainText,
0, bytesFIPS197PlainText.length,

cipherText, 0);
nCipherLen += cipher.doFinal(cipherText, nCipherLen);

Copyright © 2013 Cogent Logic Ltd.

Symmetric Key Encryption in Java

Key keyl28AES = new SecretKeySpec(bytesFIPS197Key128, "AES");

Cipher cipher = Cipher.getInstance("AES/ECB/NoPadding", "BC");

byte[] cipherText = new byte[bytesFIPS197PlainText.length];

cipher.init(Cipher.ENCRYPT_MODE, keyl28AES);

int nCipherLen = cipher.update(bytesFIPS197PlainText, 0,
bytesFIPS197PlainText.length,
cipherText, 0);

nCipherLen += cipher.doFinal(cipherText, nCipherLen);

See the sample project Symmetric Key AES FIPS-197

Copyright © 2013 Cogent Logic Ltd.

Symmetric Key Decryption in Java

Key keyl28AES = new SecretKeySpec(bytesFIPS197Key128, "AES");

Cipher cipher = Cipher.getInstance("AES/ECB/NoPadding", "BC");

byte[] bytesDecryptedText = new byte[nCipherLen];

cipher.init(Cipher .DECRYPT_MODE, keyl28AES);

int nDecryptedTextLen = cipher.update(cipherText, @, nCipherLen,

bytesDecryptedText, 0);

nDecryptedTextLen += cipher.doFinal(bytesDecryptedText,

nDecryptedTextlLen);

Copyright © 2013 Cogent Logic Ltd.

e When padding is requested, the encrypted output is unlikely to be the
same length as the clear input

e A Cipher object will supply the output length, e.g.

byte[] byteMessage = s_strMessage.getBytes("UTF-8");
cipher.init(Cipher.ENCRYPT_MODE, key192AES);
byte[] cipherText =

new byte[cipher.getOutputSize(byteMessage.length)];

String strDecryptedText = new String(bytesDecryptedText, 0,
nDecryptedTextLen, "UTF-8");

Copyright © 2013 Cogent Logic Ltd.

[nitialization Vectors

For block modes that require an initialization vector, this must be
generated and used for both encryption and decryption, e.g.

byte[] bytesIV = new byte[] {0x00, 0x01, 0x02, 0x03,
Ox04, Ox05, Ox06, Ox07,
Ox08, Ox09, OxPa, Ox6b,
Ox0c, Oxod, OxQe, OxoOf};

IvParameterSpec iv = new IvParameterSpec(bytesIV);

cipher.init(Cipher.ENCRYPT_MODE, keyl92AES, iv);

cipher.init(Cipher .DECRYPT _MODE, key1l92AES, iv);

Copyright © 2013 Cogent Logic Ltd.

Random Keys and Initialization

The keys and initialization vectors we have seen so far have been
hard-coded!

In general, we should generate these values using a cryptographically
strong random number generator using unpredictable seeds

The NIST standard in section 4.7.1 of FIPS PUB 140-2:
csrc.nist.gov/publications/fips/fipsl40-2/fipsld02.pdf

The SecureRandom class is typically used to generate pseudo-random
numbers

Copyright © 2013 Cogent Logic Ltd.

Each new SecureRandom object uses a new seed and should, therefore, be
re-instantiated when convenient

The seed is generated the first time the SecureRandom object is used, e.g.
(see the sample project Symmetric Key Generator)

SecureRandom sr = new SecureRandom();
byte[] bytesIV = new byte[1l6];
sr.nextBytes(bytesIV); // seed on first use

Random keys can be generated with a KeyGenerator object, e.g.

KeyGenerator kg = KeyGenerator.getInstance("AES", "BC");
kg.init(256);
Key key256AES = kg.generateKey();

Copyright © 2013 Cogent Logic Ltd.

Java Cryptography

Symmetric Key Cryptography
for
Android and i0S

Copyright © 2013 Cogent Logic Ltd.

Contents

e Cryptography for Android

e Cryptography for iOS

Copyright © 2013 Cogent Logic Ltd.

Cryptography for Android

Android makes use of a cut-down, old version of the Bouncy Castle
provider

Name-collisions prevent us from using an alternative version of the
Bouncy Castle provider

The Spongy Castle project enables us to get around this problem by re-
naming org.bouncycastle.* packages to org.spongycastle. *:

rtyley.github.com/spongycastle/

In general, download the Bouncy Castle software and run the
become-spongy.sh script

Copyright © 2013 Cogent Logic Ltd.

For simplicity in this training course, we will download the pre-built
Spongy Castle JAR files:

e scprov-jdkl50on-1.47.0.2.jar

e sc-1light-jdkl50on-1.47.0.2.jar
In an Android project, copy these JAR files to the libs directory

Load the Bouncy Castle provider in almost the usual way:

import org.spongycastle.jce.provider.BouncyCastleProvider;

static

{

Security.addProvider(new BouncyCastleProvider());

¥

Copyright © 2013 Cogent Logic Ltd.

Write the same Java crypto code but specify the provider as "sC" rather
than "BC":

KeyGenerator kg = KeyGenerator.getInstance("AES", "SC");

Cipher cipher = Cipher.getInstance("AES/CBC/PKCS7Padding", "SC");

Copyright © 2013 Cogent Logic Ltd.

Cryptography for iOS

i0S app development typically uses Apple's Xcode IDE with
Objective-C

We do not have access to the Bouncy Castle software but we can use
native libraries and, provided we target the same algorithms, our
data will be inter-operable

Since i0S 5, some algorithms, e.g. AES/CBC have hardware
acceleration

There is no native cryptography implementation that is usable across
all versions of i0S

We will make use of OpenSSL

Copyright © 2013 Cogent Logic Ltd.

OpenSSL was first released (version 0.9.1¢) in 1998 and is available
from:

openssl.org

OpenSSL provides an comprehensive suite of cryptographic algorithms
and has been widely adopted and scrutinized by academic researchers

Like Bouncy Castle, access to the source code ensures that there are no
'‘back-doors’

Stefan Arentz makes a pre-built i0S-specific version of OpenSSL
available from:

github.com/st3fan/ios-openssl

As with all cryptography software, due diligence must be carried out in
obtaining the OpenSSL!

Copyright © 2013 Cogent Logic Ltd.

e To use OpenSSL in an i0S project:

e Use the Add Files option to copy the openss1 include folder to your
project

o Identify the folder that contains the openssl folder and add it to
the Header Search Paths build setting,
e.g. For Classes/openssl add $(SRCROOT)/Classes

e Under Build Phases, Link Binary With Libraries, add the two
OpenSSL libraries 1ibcrypto.aand libssl.a

e libcrypto.aand libssl.a from Stefan Arentz target arm7 and i386 so
they can be used on ARM 7 i0S devices and in the i0S Simulators

e Typically, write C functions and call them from Obj-C

Copyright © 2013 Cogent Logic Ltd.

OpenSSL provides a high-level API called envelope encryption or EVP

To encrypt:

#import <openssl/evp.h>

unsigned char* encryptSymmetric(unsigned char chPlain[],
int nInputLength,
int* pnOutputLength,
unsigned char** ppchKey,
unsigned char** ppchIV)

// Prepare key and IV
/] ...

// Create buffer for output
/] ...

// Encrypt
/] ...

// Return cipher text

Copyright © 2013 Cogent Logic Ltd.

To encrypt with a prepared 256-bit AES key and IV using CBC:
// Prepare key and IV

char chKey[] = {"F32A76167C91FE311DD2CE3888BDBOFC
BC7FEEBS5F1DEB6OBFFB584A561733BAF" };
char chIV[] = {"C700C1CDC7DCF34517C66DCO6EB5FFCO"};

unsigned char* pchKey = (unsigned char*)malloc(32);
toData(chKey, 32 * 2, pchKey);
*ppchKey = pchKey;

unsigned char* pchIV = (unsigned char*)malloc(16);

toData(chlV, 16 * 2, pchIV);
*ppchIV = pchlV,;

Copyright © 2013 Cogent Logic Ltd.

To encrypt with a prepared 256-bit AES key and IV using CBC (continued):

// Create buffer for output
// -- must be at least one block longer than nInputLength

unsigned char* pchOut = (unsigned char*)malloc(nInputlLength + 16);
int nEncryptlLenl;
int nEncryptlLen2;

// Encrypt
EVP_CIPHER CTX ctx;

EVP_CIPHER CTX init(&ctx);
EVP_EncryptInit(&ctx, EVP_aes 256 cbc(), pchKey, pchlV);
EVP_EncryptUpdate(&ctx, pchOut, &nEncryptlLenl,

chPlain, nInputLength);
EVP_EncryptFinal(&ctx, pchOut + nEncryptlLenl, &nEncryptlLen2);
EVP_CIPHER CTX cleanup(&ctx);

// Return cipher text

*pnOutputLength = nEncryptLenl + nEncryptlLen2;
return pchOut;

Copyright © 2013 Cogent Logic Ltd.

e Todecrypt:

unsigned char* decryptSymmetric(unsigned char chCipher[], int
ninputLength, int* pnOutputLength, unsigned char* pchKey, unsigned
char* pchlV)

{

// Create buffer for output

// .

// Decrypt cipher text
// .

// Return recovered text

// .

Copyright © 2013 Cogent Logic Ltd.

e To decrypt (continue):

// Create buffer for output
unsigned char* pchOut = (unsigned char*)malloc(nInputLength);

// Decrypt cipher text
EVP_CIPHER CTX ctx;
EVP_CIPHER CTX init(&ctx);
EVP_DecryptInit(&ctx, EVP_aes 256 cbc(), pchKey, pchlV);
EVP_DecryptUpdate(&ctx, pchOut, &nDecryptlLenl,

chCipher, nInputLength);
EVP_DecryptFinal(&ctx, pchOut + nDecryptlLenl, &nDecryptlLen2);
EVP_CIPHER CTX cleanup(&ctx);

// Return recovered text
*pnOutputLength = nDecryptLenl + nDecryptlLen2;
return pchOut;

Copyright © 2013 Cogent Logic Ltd.

e Invoke the encryption and decryption methods:

int nEncryptedLength;
unsigned char* pchKey;
unsigned char* pchIV;

unsigned char* pchEncrypted =
encryptSymmetric((unsigned char*)"The quick brown fox...",
23, &nEncryptedLength, &pchKey, &pchIV);

int nDecryptedLength;
unsigned char* pchDecrypted =
decryptSymmetric(pchEncrypted, nEncryptedLength,
&nDecryptedLength, pchKey, pchlV);

fprintf(stdout, "Decrypted: %s", pchDecrypted);

free(pchDecrypted);
free(pchEncrypted);
free(pchKey);
free(pchlV);

Copyright © 2013 Cogent Logic Ltd.

 To generate cryptographically random data, OpenSSL provides
RAND bytes() which automatically seeds:

#import <openssl/rand.h>

unsigned char* pchKey = (unsigned char*)malloc(32);
RAND bytes(pchKey, 32);
*ppchKey = pchKey;

unsigned char* pchIV = (unsigned char*)malloc(16);

RAND_ bytes(pchIV, 16);
*ppchIV = pchlV;

Copyright © 2013 Cogent Logic Ltd.

Java Cryptography

Asymmetric Key Cryptography

Jeff Lawson

Copyright © 2013 Cogent Logic Ltd.

Contents

e Asymmetric Key Cryptography

e Transmission of Confidential Information

Copyright © 2013 Cogent Logic Ltd.

Asymmetric Key Cryptography
e Asymmetric key (a.k.a. dual-key) cryptography:

 Uses matched key-pairs: one key is used to encrypt and the
other key is used to decrypt (or vice versa!)

e One key is designated as a Private Key

e in principle, the private key never leaves the computer
on which the key-pair is generated

e The other key is designated as the Public Key

e the public key is freely distributed to anyone

Copyright © 2013 Cogent Logic Ltd.

e Simple transmission of confidential data:
e sender encrypts with the receiver’s public key
e receiver decrypts with their private key
e Asymmetric key ciphers:
e RSA—RIivest-Shamir-Adleman
e DSA—Digital Signature Algorithm: NIST

e Diffie-Hellman

Copyright © 2013 Cogent Logic Ltd.

e Key-pair generation in Java:

SecureRandom rand = new SecureRandom();

KeyPairGenerator kpg = KeyPairGenerator.getInstance("RSA", "BC");
kpg.initialize(2048, rand);
KeyPair kp = kpg.generateKeyPair();

PublicKey keyPublic = kp.getPublic();
PrivateKey keyPrivate = kp.getPrivate();

Copyright © 2013 Cogent Logic Ltd.

 Encryption with public key:

Cipher cipherEncrypt = Cipher.getInstance("RSA/NONE/OAEPPadding",
lchll);

cipherEncrypt.init(Cipher.ENCRYPT_MODE, keyPublic, rand);

byte[] bytesEncrypted = cipherEncrypt.doFinal(bytesOriginal);

e Decryption with private key:

Cipher cipherDecrypt = Cipher.getInstance("RSA/NONE/OAEPPadding",
lchll);

cipherDecrypt.init(Cipher .DECRYPT_MODE, keyPrivate);

byte[] bytesDecrypted = cipherDecrypt.doFinal(bytesEncrypted);

Copyright © 2013 Cogent Logic Ltd.

Transmission of Confidential Information

e Since symmetric cryptography presents a difficulty in transmitting
the secret key, why not just use only asymmetric cryptography?

e Because it's an order of magnitude slower!

e Use both asymmetric and symmetric ciphers:

e Asender's secret key is encrypted with a recipient’s public key

Copyright © 2013 Cogent Logic Ltd.

 To transmita message using symmetric with asymmetric ciphers:
e create a secret key on the fly for each message
e encrypt data with secret key

e encrypt secret key with receiver’s public key

e send encrypted data and encrypted secret key

e receiver decrypts the secret key with their private key

e receiver decrypts data with the secret key

Copyright © 2013 Cogent Logic Ltd.

Java Cryptography

Digital Signatures

Jeff Lawson

Copyright © 2013 Cogent Logic Ltd.

Contents

Message Authenticity and Integrity

Hash Functions

Cryptographic Hash Functions

Hash-based Message Authentication Codes

Digital Signatures

Copyright © 2013 Cogent Logic Ltd.

Message Authenticity and Integrity

e When someone sends you data how do you know:
e [treally came from the declared sender
e [twas not tampered with during transmission
e Possible solution:
e The sender encrypts the data with their private key
e Ifthe receiver can successfully decrypt the data with the sender’s

public key, it must have been sent by the declared sender and it
wasn't tampered with!

Copyright © 2013 Cogent Logic Ltd.

Problems:
e Encryption consumes processor time

e Anyone with access to the sender's public key can decrypt the
message

Solution:

e Digital signatures...

..but, first...

Copyright © 2013 Cogent Logic Ltd.

Hash Functions

A hash function is an algorithm that takes any amount of data and
generates a relatively small number (a hash value or key) in a way
designed to avoid different sets of input resulting in the same output

When collisions occur, additional steps can be taken to disambiguate
the input

A data structure called a hash table contains key/value pairs, where
the 'key; is the hash value and the 'value' is the original data

Hash tables enable us to reference large data values using small keys

Copyright © 2013 Cogent Logic Ltd.

Cryptographic Hash Functions

e Cryptographic hash functions are designed to be:
e LEasyto compute
e Infeasible to construct a message that matches a pre-defined hash
e Infeasible to modify the input data without changing the hash
 Impossible to recover the input data from the hash

e Hence, tampering is not achievable

e These hash values are called messages digests or, simply, digest

Copyright © 2013 Cogent Logic Ltd.

e There are several cryptographic hash functions in common use:

e MD5—Message Digest 5 produces 128-bit digests—
flawed: don't use!

e SHA-1—Secure Hash Algorithm 1 produces 160-bit digests—
although used widely, it has been shown to have vulnerabilities
and should not be used

e SHA-2—actually: SHA-244, SHA-256, SHA-384, SHA-512 are
thought to be safe

e SHA-3—in development and not needed (yet!)

Copyright © 2013 Cogent Logic Ltd.

Hash-based Message Authentication Codes

To authenticate messages, we could use a Hash-based Message
Authentication Code (HMAC) which is a message digest encrypted
with a symmetric key (that may be the same of different from the one
used to encrypt the message)

A MAC enables us to know that a message was not changed and, if the
key was correctly agreed upon, that it came from the sender, i.e
message integrity and authenticity

We cannot prove that a message came from the sender because the key
is not identified with the sender, i.e. We do not have non-repudiation

Copyright © 2013 Cogent Logic Ltd.

Digital Signatures

A digital signature is a message digest that has been encrypted with
the private key of the sender

The digital signature is included as part of the transmitted message

Because digital signatures can be validated only by using the sender's
public key, they provide:

e Data integrity—the massage was not tampered with

e Data authenticity—we know who sent it

e Non-repudiation—the sender cannot deny sending

Copyright © 2013 Cogent Logic Ltd.

 To sign a message, we need the private key of the sender and the signature
specification, e.g. SHA512withRSA:

byte[] bytesMessage
Signhature sigSender

strMessage.getBytes("UTF-8");
Signature.getInstance("SHA512withRSA",
lchll);

sigSender.initSign(privKeySigning);
sigSender.update(bytesMessage);
byte[] bytesSignature = sigSender.sign();

e To verify a digital signature, we need the public key of the sender:

Signature sigReceiver = Signature.getInstance("SHA512withRSA",
"BC");

sigReceiver.initVerify(pubKeyVerifying);

sigReceiver.update(bytesMessage);

boolean bValid = sigReceiver.verify(bytesSignature);

Copyright © 2013 Cogent Logic Ltd.

Java Cryptography

Authenticated Encryption

Jeff Lawson

Copyright © 2013 Cogent Logic Ltd.

Contents

e Authenticated Encryption

e GCM Cryptography with Bouncy Castle

Copyright © 2013 Cogent Logic Ltd.

Authenticated Encryption

e In the past decade new cryptographic algorithms have emerged that
combine:

e (Confidentiality—encryption
e Integrity—hashing
e Authenticity—hashing
e These algorithms provide authenticated encryption through

Authenticated Encryption with Associated Data (AEAD) block cipher
modes

Copyright © 2013 Cogent Logic Ltd.

e The most popular AEAD modes are:

e OCB (Offset Codebook Mode)—{fastest; patented but free for use in
non-military software, i.e. not for military and not in hardware:
WWW.CS.ucdavis.edu/~rogaway/ocb/license.htm

e CCM (Counter with CBC-MAC)—slow

e EAX—designed to replace CCM,;
Www.CcS.ucdavis.edu/~rogaway/papers/eax.pdf

e CWC (Carter-Wegman + CTR mode)

e GCM (Galois/Counter Mode)—fast; most popular
(GMAC is an authentication-only mode)

Copyright © 2013 Cogent Logic Ltd.

In conclusion:

e Use OCB if you are sure that your software will not be used for
military purposes or if you don't mind paying a licence fee

e (Otherwise, use GCM like most other people do
Bouncy Castle does not support OCB

Bouncy Castle's GCM implementation does not support streaming
(it's on David Hook's ToDo list)

Copyright © 2013 Cogent Logic Ltd.

GCM Cryptography with Bouncy Castle

e The GCM software is easy to write

e Prepare initialization vector and 256-bit AES key:

SecureRandom sr = new SecureRandom();

byte[] bytesIV = new byte[1l6];
sr.nextBytes(byteslIV);

IvParameterSpec iv = new IvParameterSpec(bytesIV);

KeyGenerator kg = KeyGenerator.getInstance("AES", "BC");

kg.init(256);
Key key256AES = kg.generateKey();

Copyright © 2013 Cogent Logic Ltd.

Specify the "AES/GCM /NoPadding" configuration—note that
PKCS5Padding is not used!

Cipher cipher = Cipher.getInstance("AES/GCM/NoPadding", "BC");

Encrypt as usual:

byte[] byteMessage = s strMessage.getBytes("UTF-8");
cipher.init(Cipher.ENCRYPT MODE, key256AES, iv);

byte[] cipherText =
new byte[cipher.getOutputSize(byteMessage.length)];

int nCipherLen = cipher.update(byteMessage, 0,
byteMessage.length,
cipherText, 0);

nCipherLen += cipher.doFinal(cipherText, nCipherlLen);

Copyright © 2013 Cogent Logic Ltd.

Decrypt as usual:

byte[] bytesDecryptedText = new byte[nCipherLen];

cipher.init(Cipher.DECRYPT_MODE, key256AES, iv);
int nDecryptedTextLen = cipher.update(cipherText, 0, nCipherLen,
bytesDecryptedText, 0);
nDecryptedTextLen += cipher.doFinal(bytesDecryptedText,
nDecryptedTextLen);

String strDecryptedText = new String(bytesDecryptedText, O,
nDecryptedTextLen, "UTF-8");
+ strDecryptedText);

System.out.println("Decrypted text:

Copyright © 2013 Cogent Logic Ltd.

Java Cryptography

Digital Certificates

Jeff Lawson

Copyright © 2013 Cogent Logic Ltd.

Contents

Public Key Distribution

Digital Certificates

X.500 and Distinguished Names

X.509

X500Principle Java Objects

X.509v3 Certificates in Java

PKCS #7 Cryptographic Message Syntax

Certificate Extensions

Copyright © 2013 Cogent Logic Ltd.

Public Key Distribution

If I give you my public key, you can:

 Send me confidential information (encrypted)

e Verify that information I send you came from me
Why do we need these security measures?

e Because we suspect the communication mechanism
is vulnerable to snooping and tampering

If that is the case, then it must be possible for an attacker to intercept
transmission of my public key and forward to you their public key—
man-in-the-middle attack!

Copyright © 2013 Cogent Logic Ltd.

Digital Certificates

o A digital certificate is a collection of information and other data that
has been digitally signed by a trusted authority

e A digital certificate typically contains:
e Public key(s)
e Identity of the owner (subject)
e Identity of the issuer

e Intended use, e.g. DSA public keys can only be used for
verifying signatures, not for encryption

Copyright © 2013 Cogent Logic Ltd.

Digital certificates are the main technology used in:
e Public Key Infrastructure (PKI)
e Privilege Management Infrastructure (PMI)
Consequently, there are two types of digital certificate:
e Public key certificates for PKI
e Attribute certificates for PMI
X.509 is an ITU-T* standard for PKI and PMI

The Public-Key Infrastructure (X.509) working group is known as
PKIX—see datatracker.ietf.org/wg/pkix/

* International Telecommunication Union standard for telecommunications

Copyright © 2013 Cogent Logic Ltd.

X.500 and Distinguished Names

X.500 is a series of standards for directory services

Originally, OSI-based, e.g. Directory Access Protocol (DAP) but now
TCP/IP-based, e.g. LDAP

X.500 information forms a single tree (Directory Information Tree)—
originally just one but now many

Each item of information is an entry in the tree, located by and
identified by a unique distinguished name (DN)

Distinguished names are composed of tree nodes called Relative
Distinguished Names (RDN)

Copyright © 2013 Cogent Logic Ltd.

Distinguished names identify objects of interest:
e Principals, e.g. a person, a group or an organization
e Equipment, e.g. an e-mail server or a printer

e Anything else! e.g. a document, a movie, a drill-bit

Example DN:
"CN=www.cogentlogic.com, OU=Cogent Logic Ltd., O=Company, C=UK"

Each "X=value" is a RDN and comprizes:

e Attribute type, which is an ASN.1* Object Identifier (OID),
usually aliased to a keyword e.g. "ou"

e Attribute value, e.g. "Cogent Logic Ltd."

* Abstract Syntax Notation 1

Copyright © 2013 Cogent Logic Ltd.

e Directory objects (entries) can have the following relationships with
real-world things:

e One-to-one, e.g. my web server
e One-to-many, e.g. contacts in my address book

e Many-to-one, e.g. me as a customer, me as an employee,
me as a software developer

e To make Directory Information Trees more manageable, RFC 2253
introduces restrictions on:

e OID types
e Values (UTF-8 and escape sequences, e.g. "\, " for ",")

e DN and RDN element structure

Copyright © 2013 Cogent Logic Ltd.

e Common attribute type keywords and their OIDs:
¢ CN—commonName, "2.5.4.3"
e (OU—organizationalUnit, "2.5.4.11"
e (O—organizationName, "2.5.4.10"
e (C—country, "2.5.4.6"
e L—IlocalityName, "2.5.4.7"
e ST—stateOrProvinceName, "2.5.4.8"
e DN—distinguishedName, "2.5.4.49"
e DC—domainComponent, "0.9.2342.19200300.100.1.25"

e Note: a DN identifies an object; the object itself can have zero or more
attributes

Copyright © 2013 Cogent Logic Ltd.

The OID structure for the preceding types is:
Top of OID tree
2 - ISO/ITU-T jointly assigned OIDs
2.5 - X.500 Directory Services
2.5.4 - X.500 attribute types

For other attribute types, see the drop-down list at:
oid-info.com/get/2.5.4

A domain name example, cogentlogic.com:
"DC=cogentlogic, DC=com"

A DN might be:
"CN=Cogent Logic Ltd., DC=cogentlogic, DC=com"

Copyright © 2013 Cogent Logic Ltd.

Organizations can request an OID from oid-info.com

Assignations follow:
iso(1)
identified-organization(3)
dod(6)
internet(1)
private(4)
enterprise(1)

E.g. Cogent Logic Corporation : 1.3.6.1.4.1.14981

Once you have an enterprise OID you can create your own OIDs, e.g.
MIMUID—myIMinesUserID, "1.3.6.1.4.1.14981.10.1"

Copyright © 2013 Cogent Logic Ltd.

X.509

X.509 is the X500 standard for authentication and describes public
key certificates and attribute certificates

X.509 version 3 certificates use distinguished names to identify
principals, e.g. subject and issuer

X.509v3 public key certificates contain a public key that the certificate
issuer (a Certificate Authority) asserts is owned by the subject

X.509v3 public key certificates are signed by the issuer using their
private key; the issuer's public key is held in their self-signed root
certificate

Copyright © 2013 Cogent Logic Ltd.

e X.509 public key certificates contain:
e Issuer—distinguished name
e Subject—distinguished name
e The subject’s public key

e Serial number: any number as long as it is not re-used for this type
of certificate, e.g. a timestamp or counter

e Date before which the certificate is invalid
e Date after which the certificate is invalid
e Signature algorithm, e.g. SHA512WITHRSA

e Usage attributes—what the certificate is intended to be used for,
e.g. encrypting information

e Signature

Copyright © 2013 Cogent Logic Ltd.

X500Principle Java Objects

X.500 DNs are represented in Java as X500Principle objects
(or Bouncy Castle X500Name objects)

Note: reading a name from a X500Principle object (getName()) and
using the name to create a new X500Principle object will not
necessarily produce an exact copy of the object!

Use getName() only when a human-readable version of the DN is
needed

To transmit a DN, use getEncoded(), which returns a DER* encoded

string

* Distinguished Encoding Rules

Copyright © 2013 Cogent Logic Ltd.

http://en.wikipedia.org/wiki/Distinguished_Encoding_Rules
http://en.wikipedia.org/wiki/Distinguished_Encoding_Rules

e To create a subject, invoke a javax.security.auth.x500.X500Principal
constructor, e.g.

X500Principal x500PrincipleSubject =
new X500Principal("CN=My iMine CA, DC=myimine, DC=com,
OU=My iMine Trust Authority,
O=Cogent Logic Ltd., C=UK");

e Alternatively, use org.bouncycastle.asnl.x500.X500NameBuilder, e.g.

X500NameBuilder nbSubject = new X500NameBuilder(BCStyle.INSTANCE);
nbSubject.addRDN(BCStyle.0, "Cogent Logic Ltd.");
nbSubject.addRDN(BCStyle.L, "Tideswell");
nbSubject.addRDN(BCStyle.ST, "Derbyshire");
nbSubject.addRDN(BCStyle.C, "UK");

X500Name x500Name = nbSubject.build();

Copyright © 2013 Cogent Logic Ltd.

X.509v3 Certificates in Java

End user or client certificates are called end entity certificates

To issue our own end entity certificates we must first become a
Certificate Authority

We do this by creating a self-signed root certificate, i.e. a certificate
that:

e Contains our public key
e Contains our identity as the issuer and the subject
o [sflagged as a CA certificate

e I[ssigned with our private key

Copyright © 2013 Cogent Logic Ltd.

In preparation for creating a certificate, we must decide upon a scheme
for generating serial numbers

We generate serial numbers as needed but each one must be unique
within the set certificates of a particular type

For example, all our root certificates must have different serial
numbers but this group of numbers is distinct from those used for root
certificates by other CAs and distinct from the end entity certificates
that we create

[t is common for a timestamp to be used to create a serial number;
alternatively, a simple sequence will work too:

BigInteger biSerialNumber =
BigInteger.valueOf((System.currentTimeMillis()));

BigInteger biSerialNumber = new BigInteger("1");

Copyright © 2013 Cogent Logic Ltd.

Certificates also require dates between which they are valid, e.g

int nYearsValid = 20;
Date dateNotBefore = new Date(System.currentTimeMillis());
Date dateNotAfter = new Date(System.currentTimeMillis() +
(1000L * 60 * 60 * 24 * 365 * nYearsValid));

For root certificates, the same X500Principal can be used for issuer
and subject, e.g.

X500Principal x500PrincipleRootDN
new X500Principal("CN=My iMine CA, DC=myimine, DC=com,
OU=My iMine Trust Authority,
O=Cogent Logic Ltd., C=UK");

Copyright © 2013 Cogent Logic Ltd.

Certificates can be generated from a
org.bouncycastle.cert.jcajce.JcaX509v3CertificateBuilder
which creates a certificate within a X509CertificateHolder, e.g.

JcaX509v3CertificateBuilder x509Builder =
new JcaX509v3CertificateBuilder(x500PrincipleRootDN,
biSerialNumber,
dateNotBefore,
dateNotAfter,
Xx500PrincipleRootDN,
keyPublicRoot);
X509CertificateHolder x509Holder =
x509Builder.build(sb.build(keyPrivateRoot));

The holder has the advantage of making the content of a certificate
more easily accessible

Copyright © 2013 Cogent Logic Ltd.

To extract the certificate:

CertificateFactory cf = CertificateFactory.getInstance("X.509",
"BC");
X509Certificate x509Cert =
(X509Certificate)cf.generateCertificate(
new ByteArrayInputStream(x509Holder.getEncoded()));

The validity and authenticity of a certificate can easily be checked
(exceptions thrown on error):

x509Cert.checkValidity(); // currently within dates?
x509Cert.verify(keyPublicRoot, "BC"); // signature OK?

The public key used here belongs to the pair whose private key was
used for signing!

This is the whole point of a certificate: confidence that the contained
public key belongs to the subject

Copyright © 2013 Cogent Logic Ltd.

Accessing the content of a certificate directly:

X500Principal prinIssuer = x509Cert.getIssuerX500Principal();
X500Principal prinSubject = x509Cert.getSubjectX500Principal();
System.out.println("Issuer: " + prinIssuer.getName());
System.out.println("Subject: " + prinSubject.getName());

Accessing the content of a certificate from a holder:

X500Name namelssuer = x509CertHolder.getIssuer();
X500Name nameSubject = x509CertHolder.getSubject();
System.out.println("Issuer: " + namelssuer);
System.out.println("Subject: " + nameSubject);

Copyright © 2013 Cogent Logic Ltd.

PKCS #7 Cryptographic Message Syntax

e We need to be able to distribute our certificates

e RSA Security, Inc. has published a group of public-key cryptography
standards (PKCS)

o« PKCS #7 descibes the Cryptographic Message Syntax used for
packaging certificates for distribution, often in text files with a .p7b
file name extension

 Bouncy Castle provides the class:

org.bouncycastle.cms.CMSSignedDataGenerator

Copyright © 2013 Cogent Logic Ltd.

In preparation for CMS, we need to create a certificate store:

ArrayList<X509CertificateHolder> alCert =
new ArraylList<X509CertificateHolder>();
// N.B. not X509Certificate
alCert.add(x509CertHolder); // N.B. not x509Cert
Store storeCerts = new CollectionStore(alCert);

Then we can generate the CMS message

CMSSignedDataGenerator cmsGen = new CMSSignhedDataGenerator();
cmsGen.addCertificates(storeCerts);

CMSTypedData msg = new CMSProcessableByteArray(new byte[0]);
CMSSignedData signedData = cmsGen.generate(msg, false);
byte[] pkcs7 = signedData.getEncoded();

Copyright © 2013 Cogent Logic Ltd.

e The message can then be transmitted in a data packet or stored in a
.p7b file, e.g.

File fileP7B = new File("c:\\temp\\RootCert.p7b");
if (!fileP7B.exists())
fileP7B.createNewFile();

BufferedWriter bw =
new BufferedWriter(new FileWriter(fileP7B.getAbsoluteFile()));

bw.write("----- BEGIN PKCS7----- ")
bw.write(new String(Base64.encode(pkcs7)));
bw.write("----- END PKCS7----- ");

bw.close();

e .p7bfiles can be imported into web browsers, servers, etc.

Copyright © 2013 Cogent Logic Ltd.

Certificate Extensions

The root certificate we just created was pretty crude!
We can refine our certificate by adding extensions:

e Flag for use as a CA certificate!!!

e Restrictions on its use

The way a certificate is used depends entirely upon the software
that uses it!

For interoperability with third-party software, we need to ensure
the content is acceptable for the intended purpose

Copyright © 2013 Cogent Logic Ltd.

e The X509v3CertificateBuilder method addExtension() takes three
parameters:

e ASN1ObjectIdentifier—extension type
e Boolean—critical flag
e ASNlEncodable—value

o I[fthe critical flag is false the intention is that software may make use of
the certificate without recognizing the extension

o I[fthe critical flag is true the intention is that software must recognize
the extension and act upon its value

e The X509Extension class provides ASN10bjectIdentifiers

Copyright © 2013 Cogent Logic Ltd.

The Basic Constraints extension flags a certificate as belonging to a CA
(e.g. root) or to a client (end entity), e.g.
x509Builder.addExtension(X509Extension.basicConstraints,

true, new BasicConstraints(true));

This means: add a Basic Constraints extension that is critical and
indicates that the certificate's subject is a CA

To re-emphasize: extensions can be seen as:
e A way to bolster commercial interests
A way to check that we are following PKI rules

e Somewhere in between!

Copyright © 2013 Cogent Logic Ltd.

 We can specify restrictions on the use of a certificate by adding key
usage or extended key usage extensions

e The KeyUsage class enables us to specify any number of:

e digitalSignature
e nonRepudiation

e keyEncipherment
e dataEncipherment
e keyAgreement

e keyCertSign

e CRLSign

e encipherOnly

e decipherOnly

Copyright © 2013 Cogent Logic Ltd.

If we would like to specify that the public key contained in the certificate
can be used to check digital signatures, we add digitalSignature

If we intend the key to be used to encrypt a symmetric key, we add
keyEncipherment

E.g.

Xx509Builder.addExtension(X509Extension.keyUsage, true,
new KeyUsage(KeyUsage.digitalSignature |
KeyUsage.keyEncipherment));

Copyright © 2013 Cogent Logic Ltd.

The ExtendedKeyUsage class requires KeyPurposelId values to be set

For example, to specify that a key can be used for code signing and for
encrypted e-mail:

KeyPurposeld[] keyPurposes = {KeyPurposeIld.id kp codeSigning,

KeyPurposeld.id kp emailProtection};
jcaxXx509v3CertificateBuilder.addExtension(

X509Extension.extendedKeyUsage,
true,

new ExtendedKeyUsage(keyPurposes));

Certificate code to this pointis in the X509DigitalCertificate project

Copyright © 2013 Cogent Logic Ltd.

End Entity Certificates

e Now we are a Certificate Authority and we have a root certificate, we
can issue end entity (client) certificates

 An end entity certificate is distinguished by:
e A CAissuer
e Aclient subject
e Basic Constraints that indicate it is not a CA
e Client-specific key usage
e Signed by a CA, i.e. not authenticated by the subject's public key

Copyright © 2013 Cogent Logic Ltd.

Java Cryptography

PKI

Jeff Lawson

Copyright © 2013 Cogent Logic Ltd.

Contents

e Public Key Infrastructure

Copyright © 2013 Cogent Logic Ltd.

Public Key Infrastructure

Many companies and organizations may wish to issue their own
certificates

Departments may wish to issue certificates
Problem:

e Dependant on communicating with a Certificate Authority for
issuance of certificates

Solution:
e Actas an Intermediate CA

e ActasaRootCA

Copyright © 2013 Cogent Logic Ltd.

e Intermediate CA:

e Root CA:

Copyright © 2013 Cogent Logic Ltd.

e Root CA and with many Intermediate CAs:

e Hence: establish an appropriate Public-Key Infrastructure (PKI)

Copyright © 2013 Cogent Logic Ltd.

In PKI, each certificate is issued by the subject of the next certificate
higher up in the tree except for the root which is self-signed

A certificate path, or certificate chain, is a collection of certificates:
an end-entity certificate following issuing CA certificates to the root

Certificate paths are often handled in sequence from the end-entity
certificate onwards but omitting the root certificate, it being obtained
in an especially careful way

Root certificate are the guarantors of trust that are usually installed in
a careful, deliberate step

Copyright © 2013 Cogent Logic Ltd.

Java Cryptography

Key Stores and Trust Stores

Jeff Lawson

Copyright © 2013 Cogent Logic Ltd.

Contents

Key Stores and Trust Stores

Types of Key Store

Creating a PKCS #12 Key Store

Reading a PKCS #12 Key Store

Reading a Mac OS X Keychain

Reading a Windows CAPI Certificate Store

Storing a Private Key and a Keychain

Copyright © 2013 Cogent Logic Ltd.

Key Stores and Trust Stores

A key pair is generally handled as:

e A X.509 Public-Key Certificate Path and Some key stores support
storage of symwmetric

keys but this is not

e A Private Key ordinarily necessary

JCA provides Key Stores for holding this data

There are two categories of key store:

e Those that hold a subject’s private key and their X.509
certificate path

e Those that hold the certificates of trusted third-parties

The latter does not hold any private keys and is usually
referred to as a Trust Store

Copyright © 2013 Cogent Logic Ltd.

Key stores make use of passwords for:
e The store as a whole

e Each private key
(it is usual to keep these passwords synchronized)

Each entry in a key store is identified by an alias (name)

Some key store use case-sensitive aliases and other use case-insensitive
aliases—recommendation: do not use aliases that differ only by case

Some certificate tools, e.g. Internet Explorer Certificates dialog, show the
alias as a 'friendly name'

The Mac OS X Keychain Access shows the CN as 'name’ and use this as an
alias

Copyright © 2013 Cogent Logic Ltd.

Types of Key Store

Different providers support different types of key store so it's easy for
software to encounter key store types it does not recognise!

Each JVM has a default key store type, set in the java.security file as the

keystore.type property and retrievable with
KeyStore.getDefaultType()

("jks" is not set in the java.security file)
Security providers are required to support the "PKCS12" key store type

PKCS #12 key stores are Java-independent and are usually stored in
files with .p12 or . pfx name extensions

Copyright © 2013 Cogent Logic Ltd.

Types of JVM Key Store

e The SUN 1.7 security provider supports™:

e JKS KeyStore—ci—original Sun-format key store

e C(CaseExact]KS KeyStore—cs—uvariant of JKS
e Both use a weak cipher to store data

e The Sun]JSSE 1.7 security provider supports:

e PKCS1Z2 KeyStore—ci—PKCS #12

e The SunJCE 1.7 security provider supports:

e JCEKS KeyStore—ci—Kkeys protected with Triple-DES

* ¢l => case-insensitive aliases

Copyright © 2013 Cogent Logic Ltd.

Types of System-Specific Key Store

e The SunMSCAPI 1.7 security provider supports:
e Windows-MY KeyStore

e WWindows-ROOT KeyStore

both used to access Windows CryptoAPI certificate stores
e The Apple 1.1 security provider supports:

. f{eychainStOre KeyStore—enables Mac OS X keychain access from
ava

Copyright © 2013 Cogent Logic Ltd.

Types of Legion of the Bouncy Castle Key Store

e The BC 1.48 security provider supports:
e BouncyCastle KeyStore
e BKS KeyStore—cs—Kkeys protected with Triple-DES

e BCPKCS1Z2 KeyStore

e PK(CS1Z2 KeyStore

e PK(CS12-DEF KeyStore

e PKCS12-3DES-40RCZ2 KeyStore

e PKCS12-3DES-3DES KeyStore

e PKCS12-DEF-3DES-40RCZ2 KeyStore
e PKCS12-DEF-3DES-3DES KeyStore

Copyright © 2013 Cogent Logic Ltd.

Creating a PKCS #12 Key Store

e (reate and initialize the key store:

KeyStore ksPKCS12 = KeyStore.getInstance("PKCS12", "BC");
ksPKCS12.load(null, null);

e Add entries to the key store:

ksPKCS12.setCertificateEntry("Cogent Logic Root CA",
cw.getX509R00tCA());

ksPKCS12.setCertificateEntry("My iMine Intermediate CA",
cw.getX509IntermediateCA());

ksPKCS12.setCertificateEntry("Jeff Lawson End Entity",
cw.getX509EndEntity());

Copyright © 2013 Cogent Logic Ltd.

e Save the key store:

FileOutputStream fos =

new FileOutputStream("c:\\temp\\KeyStorePKCS12.p12");
ksPKCS12.store(fos, "obscure".toCharArray()); // password
fos.close();

e The .p12 file can be imported into PKCS #12 compliant certificate
management tools such as web browsers and the Mac OS X Keychain
Access utility

Copyright © 2013 Cogent Logic Ltd.

Reading a PKCS #12 Key Store

 Read the key store:

KeyStore ksFromDisk = KeyStore.getInstance("PKCS12", "BC");
FileInputStream fis =

new java.io.FileInputStream("c:\\temp\\KeyStorePKCS12.p12");
ksFromDisk.load(fis, "obscure".toCharArray()); // password
fis.close();

 Read entries from the key store:

X509Certificate x509Ro00tCA = (X509Certificate)
ksFromDisk.getCertificate("Cogent Logic Root CA");

X509Certificate x509IntermediateCA = (X509Certificate)
ksFromDisk.getCertificate("My iMine Intermediate CA");

X509Certificate x509EndEntity = (X509Certificate)
ksFromDisk.getCertificate("Jeff Lawson End Entity");

Copyright © 2013 Cogent Logic Ltd.

Make use of the entries:

System.out.println("X509 Root CA -- " +
X509R00tCA. getSubjectDN());

System.out.println("X509 Intermediate CA -- " +
x509IntermediateCA.getSubjectDN());

System.out.println("X509 End Entity -- " +
X509EndEntity.getSubjectDN());

Copyright © 2013 Cogent Logic Ltd.

Reading a Mac OS X Keychain

e The Apple JCA security provider enable Mac OS X keychains to be
accessed, e.g.

// N.B. KeychainStore, not PKCS12
KeyStore ksKeychain = KeyStore.getInstance("KeychainStore",
"Apple™);
FileInputStream fis =
new java.io.FileInputStream("/Users/jeff/Library/
Keychains/login.keychain");
ksKeychain.load(fis, null);
fis.close();

e A password is not required if the software runs in the security context
of the logged-on user

Copyright © 2013 Cogent Logic Ltd.

Read entries:

// N.B. The "alias' created by the Mac OS X keychain is the CN

// (not the 'friendly name' from the Java keystore)

X509Certificate x509Ro00tCA = (X509Certificate)
ksKeychain.getCertificate("Cogent Logic Root CA");

X509Certificate x509IntermediateCA = (X509Certificate)
ksKeychain.getCertificate("My iMine Intermediate CA");

X509Certificate x509EndEntity = (X509Certificate)
ksKeychain.getCertificate("Jeff Lawson");

Make use of the entries:

System.out.println("X509 Root CA -- " +
X509R00tCA.getSubjectDN());

System.out.println("X509 Intermediate CA -- " +
x509IntermediateCA.getSubjectDN());

System.out.println("X509 End Entity -- " +
X509EndEntity.getSubjectDN());

Copyright © 2013 Cogent Logic Ltd.

e Note: when data from a keychain is loaded into a Java key store,
certificates are parsed. If an unrecognized certificate extension is
encountered an internal exception is thrown (KeychainStore Ignored
Exception) that appears as "Duplicate extensions not allowed”

Copyright © 2013 Cogent Logic Ltd.

Reading a Windows CryptoAPI Certificate Store

Importing a .p12 file into Internet Explorer should work fine but
intermediate and end entity certificates may not appear in the
Certificates dialog!

To access these certificates, use the provider that interfaces with the
Windows CryptoAPI:

KeyStore ksCAPI = KeyStore.getInstance("Windows-ROOT",
"SunMSCAPI");
ksCAPI.load(null,null);

Notice that a file path or password is not provided

Copyright © 2013 Cogent Logic Ltd.

Read entries:

X509Certificate x509Ro00tCA = (X509Certificate)
ksCAPI.getCertificate("Cogent Logic Root CA");

X509Certificate x509IntermediateCA = (X509Certificate)
ksCAPI.getCertificate("My iMine Intermediate CA");

X509Certificate x509EndEntity = (X509Certificate)
ksCAPI.getCertificate("Jeff Lawson End Entity");

Note: if there is a 'friendly name' this will be used as the alias else
('friendly name' shown as <None>) the CN is used as the alias

Make use of the entries:

System.out.println("X509 Root CA -- " +
X509R00tCA. getSubjectDN());

System.out.println("X509 Intermediate CA -- " +
x509IntermediateCA.getSubjectDN());

System.out.println("X509 End Entity -- " +
X509EndEntity.getSubjectDN());

Copyright © 2013 Cogent Logic Ltd.

Storing a Private Key and a Keychain

e A user my wish to store their private key and its associated keychain

e Separate passwords are needed for the key store and the private key
within the key store (though they often have the same value)

Create and initialize a key store in the usual way:

KeyStore ksPrivateKeyAndCertChain =

KeyStore.getInstance("PKCS12", "BC");
ksPrivateKeyAndCertChain.load(null, null);

Copyright © 2013 Cogent Logic Ltd.

Create the key store entry:

// the root certificate is typically not included
Certificate[] certChain = {cw.getX509EndEntity(),
cw.getX509IntermediateCA()};

ksPrivateKeyAndCertChain.setKeyEntry("End Entity",
cw.getKeyPairEndEntity().getPrivate(),
"obscureEE".toCharArray(), certChain);

Note: java.security.cert.X509Certificatelisa
java.security.cert.Certificate

Save the key store:

fos = new FileOutputStream("c:\\temp\
\PrivateKeyAndCertChainPKCS12.p12");

ksPrivateKeyAndCertChain.store(fos,
"obscure2".toCharArray());

fos.close();

Copyright © 2013 Cogent Logic Ltd.

To read the key store:

KeyStore ksFromDisk2 = KeyStore.getInstance("PKCS12", "BC");

fis = new java.io.FileInputStream("c:\\temp\
\PrivateKeyAndCertChainPKCS12.p12");

ksFromDisk2.load(fis, "obscure2".toCharArray());

fis.close();

Discover aliases, if desired:

Enumeration<String> enumAliases = ksFromDisk2.aliases();
while (enumAliases.hasMoreElements())
System.out.println(enumAliases.nextElement());

Read entries from the key store:

PrivateKey privKey = (PrivateKey)ksFromDisk2.getKey("End Entity",

"obscureEE" .toCharArray());
Certificate[] certChainFromDisk =

ksFromDisk2.getCertificateChain("End Entity");

Copyright © 2013 Cogent Logic Ltd.

e Make use of the entries:

System.out.println("Private Key -- " + privKey.getAlgorithm());
X509Certificate x509Cert;

for (int n=0; n<certChainFromDisk.length; n++)

{
x509Cert = (X509Certificate)certChainFromDisk[n];
System.out.println("X.509 Certificate in chain -- " +
x509Cert.getSubjectDN());
}

Copyright © 2013 Cogent Logic Ltd.

Java Cryptography

SSL and TLS (JSSE)

Jeff Lawson

Copyright © 2013 Cogent Logic Ltd.

SSL and TLS

TLS 1.2 with Java
SSLContext Objects
Server-Side TLS 1.2

Client-Side TLS 1.2

Contents

SSL/TLS Protocols and Cipher Suites

Copyright © 2013 Cogent Logic Ltd.

SSL and TLS

e Secure Sockets Layer is an application protocol created by Netscape to:
 Encrypt Internet links
 Ensure data integrity through a HMAC
e Authenticate servers to clients
e Optionally authenticate clients to servers
e SSL 3.0 published in 1996
e Transport Layer Security replaces SSL; currently TLS 1.2

e HTTPS runs over SSL/TLS: install certificate in Apache

Copyright © 2013 Cogent Logic Ltd.

TLS 1.2 with Java

Java Virtual Machine SSL and TLS support used to be called the Java
Secure Socket Extension (JSSE) but became integrated in Java 1.4

Java 1.7 (Java Platform, Standard Edition 7), adds the possibility of
mandating the use of desired protocols and cipher schemes

To implement SSL/TLS with both server-side and client-side
authentication, we first need to create:

e A trust store for verifying certificates: contains the root CA
certificate

e Aserver-based key store: private key and root CA certificate

e A client-based key store: private key and certificate chain

Copyright © 2013 Cogent Logic Ltd.

e JSSE makes use of KeyManagers and TrustManagers

e AKeyManager object encapsulates a key store:
e Local public-key certificate or certificate chain
e Local private key

e A TrustManager object encapsulates a trust store:

e Remote public-key certificates:
e On aclient to authenticate the server

e (On aserver to authenticate a client

Copyright © 2013 Cogent Logic Ltd.

First generate key pairs and create certificates

The root CA certificate needs the extended usage id kp serverAuth

KeyPair kpRootCA = generateKeyPair();

X500Principal x500PrincipleRootCA =
new X500Principal("CN=Cogent Logic Root CA,
DC=cogentlogic, DC=com,
O=Cogent Logic Ltd., C=UK");

int nKeyUsageRootCA = KeyUsage.keyCertSign |
KeyUsage.digitalSignature |
KeyUsage.keyEncipherment;

KeyPurposelId|[] keyPurposesRootCA =
{KeyPurposeld.id kp scvpServer};

X509CertificateHolder x509CertHolderRootCA =
createCertificateHolder (x500PrincipleRootCA,
new BigInteger("1"), 20,
Xx500PrincipleRootCA,
kpRootCA.getPublic(), true, 1,
nKeyUsageRootCA, keyPurposesRootCA,
kpRootCA.getPrivate());

Copyright © 2013 Cogent Logic Ltd.

The intermediate CA certificate:

KeyPair kpIntermediateCA = generateKeyPair();

X500Principal x500PrincipleIntermediateCA =
new X500Principal("CN=My iMine Intermediate CA,
DC=myimine, DC=com,
OU=My iMine Trust Authority,
O=Cogent Logic Ltd., C=UK");

int nKeyUsageIntermediateCA = KeyUsage.keyCertSign |
KeyUsage.digitalSignature |
KeyUsage.keyEncipherment;

KeyPurposeld[] keyPurposesIntermediateCA = {};

X509CertificateHolder x509CertHolderIntermediateCA =
createCertificateHolder(x500PrincipleRootCA,

new BigInteger("10"), 2,
x500PrincipleIntermediateCA,
kpIntermediateCA.getPublic(), true, 0,
nKeyUsageIntermediateCA,
keyPurposesIntermediateCA,
kpRootCA.getPrivate());

Copyright © 2013 Cogent Logic Ltd.

The end entity certificate needs the extended usage id_kp_clientAuth

KeyPair kpRootCA = generateKeyPair();

X500Principal x500PrincipleRootCA =
new X500Principal("CN=Cogent Logic Root CA,
DC=cogentlogic, DC=com,
O=Cogent Logic Ltd., C=UK");

int nKeyUsageRootCA = KeyUsage.keyCertSign |
KeyUsage.digitalSignature |
KeyUsage.keyEncipherment;

KeyPurposeld[] keyPurposesRootCA =
{KeyPurposeld.id kp scvpServer};

X509CertificateHolder x509CertHolderRootCA =
createCertificateHolder (x500PrincipleRootCA,
new BigInteger("1"), 20,
x500PrincipleRootCA,
kpRootCA.getPublic(), true, 1,
nKeyUsageRootCA, keyPurposesRootCA,
kpRootCA.getPrivate());

Copyright © 2013 Cogent Logic Ltd.

Prepare to use the key pairs and certificates:

CryptoWrapper cw = generateCrypto();

KeyPair kpRootCA = cw.getKeyPairRootCA();

KeyPair kpEndEntity = cw.getKeyPairEndEntity();

X509Certificate x509R00tCA = cw.getX509Ro00tCA();

X509Certificate x509IntermediateCA = cw.getX509IntermediateCA();
X509Certificate x509EndEntity = cw.getX509EndEntity();

Create a trust store:

KeyStore ksTrustStorelKS = KeyStore.getInstance("JKS");
ksTrustStoreJKS.load(null, null);
ksTrustStorelKS.setCertificateEntry(Constants.TRUST STORE_KS NAME,

X509R00tCA) ;
FileOutputStream fos =

new FileOutputStream(Constants.TRUST STORE_KS NAME + ".jks");

ksTrustStorelKS.store(fos, Constants.TRUST STORE_KS PASSWORD);
fos.close();

Copyright © 2013 Cogent Logic Ltd.

Create the server-based key store:

KeyStore ksServerJKS = KeyStore.getInstance("JKS");
ksServerJKS.load(null, null);
ksServerJKS.setKeyEntry(Constants.SERVER KS NAME,
kpRootCA.getPrivate(),
Constants.SERVER_KS PASSWORD,
new Certificate[] {x509Roo0tCA});
fos = new FileOutputStream(Constants.SERVER_KS_NAME + ".jks");
ksServerJKS.store(fos, Constants.SERVER_KS PASSWORD);

fos.close();

Copyright © 2013 Cogent Logic Ltd.

Create the client-based key store:

KeyStore ksClientPKCS12 = KeyStore.getInstance("PKCS12", "BC");
ksClientPKCS12.load(null, null);
ksClientPKCS12.setKeyEntry(Constants.CLIENT KS NAME,
kpEndEntity.getPrivate(),
Constants.CLIENT_KS PASSWORD,
new Certificate[] {x509EndEntity,
x509IntermediateCA,
X509R00tCA});
fos = new FileOutputStream(Constants.CLIENT KS NAME + ".pl2");
ksClientPKCS12.store(fos, Constants.CLIENT KS PASSWORD);

fos.close();

Copyright © 2013 Cogent Logic Ltd.

SSLContext Objects

e On both the server and the client, we need to encapsulate the trust
manager and the appropriate key store in an SSLContext object

e The trust store initialises a TrustManagerFactory:

TrustManagerFactory tmFactory =
TrustManagerFactory.getInstance("SunX509");

KeyStore ksTrustStore = KeyStore.getInstance("JKS");

ksTrustStore.load(
new FileInputStream(Constants.TRUST STORE KS NAME + ".jks"),
Constants.TRUST STORE_KS PASSWORD);

tmFactory.init(ksTrustStore);

Copyright © 2013 Cogent Logic Ltd.

A key store initializes a KeyManagerFactory—server:

KeyManagerFactory kmFactory =
KeyManagerFactory.getInstance("SunX509");

KeyStore ksServer = KeyStore.getInstance("JKS");

ksServer.load(new FileInputStream(Constants.SERVER KS NAME + ".jks"),
Constants.SERVER KS PASSWORD);

kmFactory.init(ksServer, Constants.SERVER_KS_ PASSWORD);

A key store initializes a KeyManagerFactory—client:

KeyManagerFactory kmFactory =
KeyManagerFactory.getInstance("SunX509");

KeyStore ksClient = KeyStore.getInstance("PKCS12");

ksClient.load(new FileInputStream(Constants.CLIENT KS NAME + ".p12"),
Constants.CLIENT KS PASSWORD);

kmFactory.init(ksClient, Constants.CLIENT_KS PASSWORD);

Copyright © 2013 Cogent Logic Ltd.

Finally, the SSLContext can be created from the TrustManagerFactory and
the KeyManagerFactory:

SSLContext sslContext = SSLContext.getInstance("TLSv1l.2");

sslContext.init(kmFactory.getKeyManagers(),
tmFactory.getTrustManagers(), null);
// use default SecureRandom

Now we have SSLContext objects we can create a SSLServerSocket on the
server and a SSLSocket on the client

Both these classes have methods getSSLParameters() and
setSSLParameters() for additional configuration

Copyright © 2013 Cogent Logic Ltd.

Server-Side TLS 1.2

Server-side TLS 1.2 code:

SSLServerSocketFactory sslServerFactory =
sslContext.getServerSocketFactory();
SSLServerSocket sslServerSock = (SSLServerSocket)
sslServerFactory.createServerSocket(Constants.PORT_NO);
SSLParameters sslParams = sslServerSock.getSSLParameters();
sslParams.setProtocols(new String[] {"TLSv1.2"});
sslParams.setCipherSuites(new String]]
{"TLS _RSA_WITH_AES 256 CBC_SHA256"});
sslParams.setNeedClientAuth(true); // c.f. SetWantClientAuth()
sslServerSock.setSSLParameters(sslParams);

Copyright © 2013 Cogent Logic Ltd.

SSLSocket sslSock = (SSLSocket)sslServerSock.accept();
ssl1Sock.startHandshake();
// throws SSLHandshakeException "No appropriate protocol”
// or "no cipher suites in common”
if (isEndEntityAuthorized(sslSock.getSession()))
{
InputStream is = sslSock.getInputStream();
OutputStream os = sslSock.getOutputStream();
/] ...

¥

sslServerSock.close();

private static boolean isEndEntityAuthorized(SSLSession session)
throws SSLPeerUnverifiedException
{
Principal prin = session.getPeerPrincipal();
if (!(prin instanceof X500Principal))
return false;
X500Principal x500Prin = (X500Principal)prin;
return x500Prin.getName().equals("CN=Jeff Lawson,
OU=Software Development,0=Cogent Logic Ltd.,C=UK");

Copyright © 2013 Cogent Logic Ltd.

Client-Side TLS 1.2

Client-side TLS 1.2 code:

SSLSocketFactory sslFactory = sslContext.getSocketFactory();

SSLSocket sslClientSock =
(SSLSocket)sslFactory.createSocket(Constants.HOST,
Constants.PORT NO);

SSLParameters sslParams = sslClientSock.getSSLParameters();
sslParams.setProtocols(new String[] {"TLSv1.2"});

sslParams.setCipherSuites(new String]]
{"TLS _RSA WITH AES 256 CBC SHA256"});

sslClientSock.setSSLParameters(sslParams);

OutputStream os = sslClientSock.getOutputStream();
InputStream is = sslClientSock.getInputStream();

// ...
sslClientSock.close();

Copyright © 2013 Cogent Logic Ltd.

SSL/TLS Protocols and Cipher Suites

e We need to be sure that the protocols and cipher suites we are happy
to support on the server is available to all clients

e Available options can be discovered:

String[] strProtocols = sslParams.getProtocols();
if (strProtocols != null)

for (int n=0; n<strProtocols.length; n++)
System.out.println("Protocol: " + strProtocols[n]);

String[] strCipherSuites = sslParams.getCipherSuites();
if (strCipherSuites != null)

for (int n=0; n<strCipherSuites.length; n++)
System.out.println("Cipher Suite: " +
strCipherSuites[n]);

Copyright © 2013 Cogent Logic Ltd.

e Sample protocols:

SSLv3
TLSv1
TLSv1.1
TLSv1.2

e Sample cipher suites:

TLS_ECDHE_ECDSA_WITH_AES 256 CBC_SHA384
TLS_ECDHE_RSA WITH AES 256 CBC_SHA384
TLS RSA WITH AES 256 CBC_SHA256
TLS_ECDH_ECDSA WITH_AES 256 CBC_SHA384
TLS_ECDH_RSA_WITH_AES 256 CBC_SHA384
TLS_DHE_RSA WITH_AES 256 CBC_SHA256
TLS_DHE_DSS WITH_AES 256 CBC_SHA256
TLS_ECDHE_ECDSA_WITH AES 256 CBC_SHA
TLS_ECDHE_RSA WITH AES 256 CBC_SHA
TLS_RSA_WITH_AES 256 CBC_SHA
TLS_ECDH_ECDSA WITH_AES 256 CBC_SHA
TLS_ECDH_RSA_WITH AES 256 CBC_SHA
TLS_DHE_RSA WITH_AES 256 CBC_SHA

Copyright © 2013 Cogent Logic Ltd.

Java Cryptography

Accessing LDAP Servers with JNDI

Jeff Lawson

Copyright © 2013 Cogent Logic Ltd.

Contents

Naming and Directory Servers
Lightweight Directory Access Protocol
LDAP Access Using JNDI

Creating an inetOrgPerson LDAP Entry

Reading an inetOrgPerson LDAP Entry

Copyright © 2013 Cogent Logic Ltd.

Naming and Directory Servers

e A naming service holds entries that are name/value pairs following a
suitable organizational scheme such that each entry can be located by
a path
e.g. DNS, telephone directory

e Adirectory service is like a naming service but each entry may have
zero or more attributes
e.g. Window Active Directory, Apache Directory Server,
X.500 directory services

e AX.500 directory service identifies entries with distinguished names
and is accessed with Directory Access Protocol (DAP) over a OSI
network

Copyright © 2013 Cogent Logic Ltd.

Lightweight Directory Access Protocol

Lightweight Directory Access Protocol is used to access X.500
directory services over TCP/IP

LDAP has become so popular that it is now used to access non-X.500
directory services, e.g. Active Directory, and even has directory

services implementations based more on LDAP than X.500,
e.g. OpenLDAP

OpenLDAP uses the well-known port 389 and, for OpenLDAP over
TLS/SSL, 636

Copyright © 2013 Cogent Logic Ltd.

OpenLDAP is available for all platforms and may be downloaded from
www.openldap.org

Specifically, for packaged versions of OpenLDAP:
www.openldap.org/faq/data/cache/108.html

For Windows, use:
wWww . userbooster.de/en/download/openldap-for-windows.aspx

JXplorer is a useful LDAP browser available for all platforms from:
jxplorer.org

Note: we do not cover secure access to the OpenLDAP server on this
course but by now you ought to be able to generate CA certificates and
use them to configure OpenLDAP!

Copyright © 2013 Cogent Logic Ltd.

LDAP Access Using JNDI

The Java Naming and Directory Interface (JNDI) enables Java software
to access naming and directory services, including those with an LDAP
interface

A JNDI context abstracts entries in an LDAP-based server

JNDI may be configured programmatically or declaratively (using
system variables)

Copyright © 2013 Cogent Logic Ltd.

To gain access to the root of an OpenLDAP service:

Hashtable<String, String> htEnv =
new Hashtable<String, String>(11);
htEnv.put(Context.INITIAL CONTEXT FACTORY,
"com.sun.jndi.ldap.LdapCtxFactory");
htEnv.put(Context.PROVIDER URL, "ldap://localhost:389");
htEnv.put(Context.SECURITY AUTHENTICATION, "simple");
htEnv.put(Context.SECURITY_ PRINCIPAL,
"cn=Manager,dc=maxcrc,dc=com");
htEnv.put(Context.SECURITY CREDENTIALS, "secret");
htEnv.put("java.naming.ldap.version", "3");
DirContext dirctx = new InitialDirContext(htEnv);

To gain access to an entry at a given DN:

DirContext dirctxPeople =
(DirContext)dirctx.lookup("ou=People,dc=maxcrc,dc=com");

Note: "dc=com,dc=maxcrc,ou=People" will not work

Copyright © 2013 Cogent Logic Ltd.

e We can record details of a person, including their end entity X.509
certificate, using an inetOrgPerson entry

e We create the desired attributes then make the following call against
the containing context:

createSubcontext(String name, Attributes attrs)

where name is the common name

Copyright © 2013 Cogent Logic Ltd.

Creating an inetOrgPerson LDAP Entry

e To create an inetOrgPerson entry:

String strGivenName = "Jeffrey";
String strSurname = "Lawson";
String strEmail = "jdl@cogentlogic.com”;

BasicAttributes attrs = new BasicAttributes(true);
Attribute attrObjclass = new BasicAttribute("objectClass");
attrObjclass.add("top");

attrObjclass.add("inetOrgPerson");

attrs.put(attrObjclass);

Attribute attrGivenName = new BasicAttribute("givenName");
attrGivenName.add(strGivenName);
attrs.put(attrGivenName);

Copyright © 2013 Cogent Logic Ltd.

e To create an inetOrgPerson (continued):

Attribute attrSurname = new BasicAttribute("sn");
attrSurname.add(strSurname);
attrs.put(attrSurname);

Attribute attrEmail = new BasicAttribute("mail");
attrEmail.add(strEmail);
attrs.put(attrEmail);

Attribute attrCertificate =
new BasicAttribute("userCertificate;binary",
X509EndEntity.getEncoded());
attrs.put(attrCertificate);

DirContext dirctxPerson =
dirctxPeople.createSubcontext("cn="

+ strGivenName +
+ strSurname, attrs);

e Notice the use of the attribute subclass ;binary

Copyright © 2013 Cogent Logic Ltd.

Reading an inetOrgPerson LDAP Entry

e Toread an inetOrgPerson entry from a root context:

DirContext dirctxPerson =
(DirContext)dirctx.lookup("cn=Jeffrey Lawson,
ou=People,dc=maxcrc,dc=com");

Attributes attrs = dirctxPerson.getAttributes("");
Attribute attr = attrs.get("userCertificate;binary");

byte[] bytesCert = (byte[])attr.get();
if (bytesCert == null || bytesCert.length == 0)
throw new Exception("Cannot read X.509 certificate");

CertificateFactory cf = CertificateFactory.getInstance("X.509",
Ichll);
InputStream is = new ByteArrayInputStream(bytesCert);

X509Certificate x509Cert =
(X509Certificate)cf.generateCertificate(is);

System.out.println(x509Cert.toString());

Copyright © 2013 Cogent Logic Ltd.

 We ought to verify the certificate with the issuer's public key:

x509Cert.checkValidity();
x509Cert.verify(keyPublicCA, "BC");

Copyright © 2013 Cogent Logic Ltd.

Java Cryptography

Certificate Revocation Lists
and
Online Certificate Status Protocol

Jeff Lawson

Copyright © 2013 Cogent Logic Ltd.

Contents

Subject Key Identifiers
Authority Key Identifiers
Certificate Revocation Lists

Online Certificate Status Protocol

Copyright © 2013 Cogent Logic Ltd.

Subject Key Identifiers

e Processing certificate chains involves identifying which certificate
validates which other certificate, i.e. knowing where to find the CA
public key to validate a certificate

e To facilitate certificate ordering, we can add to certificates optional
X.509 extensions called key identifiers

e Subject key identifiers can be any value but they are usually a
monotonically increasing number or, more likely, the hash of the
subject's public key—the benefit of such a value is that it can be
referenced from another certificate, e.g. (false => optional)

x509Builder.addExtension(X509Extension.subjectKeyIdentifier,
false,
jcaUtils.createSubjectKeyIdentifier(pubKeySubject));

Copyright © 2013 Cogent Logic Ltd.

Authority Key Identifiers

 An authority key identifier in a certificate enables us to reference the
subject key identifier of the issuing CA certificate and contains:

o Key identifier of the authority

e Authority certificate issuer, i.e. the DN of the authority that
issued the authority certificate

e Authority certificate serial number

e S0, an end entity certificate might contain an authority key identifier
extension that holds:

o Key identifier of the issuing intermediate CA
e DN of the root CN (issuer of the intermediate certificate)

e The serial number of the intermediate certificate

Copyright © 2013 Cogent Logic Ltd.

Creating an authority key identifier (false => optional):

x509Builder.addExtension(X509Extension.subjectKeyIdentifier,
false,
jcaUtils.createSubjectKeyIdentifier(pubKeySubject));

See how this code is used in the sample project Certificate Revocation
Lists

Copyright © 2013 Cogent Logic Ltd.

Certificate Revocation Lists

In PKI environments very many public-key certificates are generated,
expire and are replaced

[t is important for users to have a reliable way to acquire certificates
and to known when they have been revoked

Certificate Revocation Lists are used to inform users of invalid
end-entity certificates

Authority Revocation Lists are used to inform users of invalid
CA public-key certificates

These lists contain one or more entries of revocation

Copyright © 2013 Cogent Logic Ltd.

e Possible reasons for revoking a certificate:
e unspecified
e keyCompromise
e cACompromise
e affiliationChanged
e superseded
e cessationOfOperation
e certificateHold
e removeFromCRL
e privilegeWithdrawn

e aACompromise

Copyright © 2013 Cogent Logic Ltd.

e To create a CRL using Bouncy Castle:

// Issue a CRL now
Date dateNow = new Date();

X509v2CRLBuilder cb =
new JcaX509v2CRLBuilder(x509CrlIssuer, dateNow);

cb.addExtension(X509Extension.cRLNumber, false,
new CRLNumber(biCrlSerialNumber));

// Update (i.e. becomes available) one minute from now

cb.setNextUpdate(new Date(dateNow.getTime() + 60000));
// milliseconds since the standard base time

Copyright © 2013 Cogent Logic Ltd.

e To add an entry to a CRL using Bouncy Castle:

cb.addCRLEntry(biRevokedCertificateSerialNumber, dateNow,
CRLReason.keyCompromise, datelnvalid);

cb.addExtension(X509Extension.authorityKeyIdentifier, false,
new JcaX509ExtensionUtils()
.createAuthorityKeyIdentifier(x509CrlIssuer));

e datelInvalid is optional and refers to the event that gave rise revocation,
e.g. when the key was compromised

Copyright © 2013 Cogent Logic Ltd.

e To generate a CRL:

JcaContentSignerBuilder signerBuilder =
new JcaContentSignerBuilder("SHA256withRSAEncryption”);

signerBuilder.setProvider("BC");

ContentSigner cs = signerBuilder.build(privKeyIssuer);

X509CRLHolder crlHolder cb.build(cs);

JcaX509CRLConverter crlConvert = new JcaX509CRLConverter();
crlConvert.setProvider("BC");

X509CRL x509CRL = crlConvert.getCRL(crlHolder);

Copyright © 2013 Cogent Logic Ltd.

e To verify a CRL:

X509CRL.verify(x509IntermediateCA.getPublicKey(), "BC");
// throws SignatureException

e To check if a certificate has been revoked:

X509CRLEntry crlEntry =
X509CRL .getRevokedCertificate(x509EndEntity.getSerialNumber());
if (crlEntry == null)
System.out.println("Certificate still valid.");
else
System.out.println(x509CRL.getIssuerX500Principal().getName() +
" has revoked " + crlEntry.getSerialNumber() +

on " + crlEntry.getRevocationDate());

e Typically, store CRLs in LDAP servers as cRLDistributionPoint entries

Copyright © 2013 Cogent Logic Ltd.

Online Certificate Status Protocol

 (CRLs operate like black-lists, identifying certificates that are invalid

e In systems with a large number of revocations, CRLs become difficult
to manage

e A better approach is to have a white-list system that knows about
certificates that are valid

e Online Certificate Status Protocol does this
e C(lients send requests to a OCSP Responder (server)

e The OCSP Responder informs the client of a certificate's validity

Copyright © 2013 Cogent Logic Ltd.

Java Cryptography

Privilege Management Infrastructure

Jeff Lawson

Copyright © 2013 Cogent Logic Ltd.

Contents

e Privilege Management Infrastructure

Copyright © 2013 Cogent Logic Ltd.

Privilege Management Infrastructure

PKI uses X.509 public-key certificates to provide distributed platform-
independent subject authentication

The X.509 standard enables extension data to be added to public-key
certificates to specify subject authorization capabilities such a
resource permissions.

This is a poor way to use public-key certificates because:
e C(ertificates must be reissued when permissions change
 Resource managers must have influence over the issuing CA

Thankfully, X.509 provides for attribute certificates that cite public-key
certificates and specify capabilities

Copyright © 2013 Cogent Logic Ltd.

A distributed system of authorization through X.509 Attribute
Certificates is known as a Privilege Management Infrastructure (PMI)

Imagine you are managing resources (printers, file shares, hockey sticks,
whatever):

e You can look up X.509 public-key certificates in you company’s
(department’s, club’s) LDAP server and decide who to grant access
to which resources and at what level (read-only, ‘playable’, whatever)

e When subjects present themselves for resource access, your
wonderful software (Security Manager?) will automatically
grant/deny access

Copyright © 2013 Cogent Logic Ltd.

o After a while you realize that some resources that you have granted
access to are being passed on to non-authorized individuals!

e To combat this you decide to institute a classification scheme that
requires:

e (lassified resources to display a notice,

)

e.g. “Confidential:...", “Secret:...", etc.

e Subjects to be assigned clearance levels that determine which
classified resources they access and how

 Hence, you have rule-based access control

Copyright © 2013 Cogent Logic Ltd.

Things are going great until you realize that other resource managers
in other departments have had similar ideas but their notion of
“Confidential” is not the same as yours!

At this point the librarian suggests that each department have its own
Security Policy so that resources belong to a Security Domain or Realms

Hence, you have Partitioned Rule-Based Access Control (PRBAC)

Copyright © 2013 Cogent Logic Ltd.

Unfortunately, few implementations of PMI currently exist but PMI
is part of X.509 and the Bouncy Castle security service provider
does support attribute certificates

The U.S. National Security Agency produced a document in 1999 that
states:

SDN.801: ACCESS CONTROL CONCEPT AND MECHANISMS
This document provides guidance for implementing access control
concepts using both public key certificates and attribute certificates.

SDN.801 provides guidance for X.509-based PRBAC

Copyright © 2013 Cogent Logic Ltd.

e What's the problem with Partitioned Rule-Based Access Control?

Copyright © 2013 Cogent Logic Ltd.

e Do youreally want to create attribute certificates on each type of
resource within a security realm for each subject’s public-key certificate?

 Probably not. Instead, define user roles within each X.509 Security Policy
then:

e Only ever set resource permissions for roles
e.g. ‘clean-access for offices is assigned exclusively to managers on
Saturday evening’

e Assign subjects to roles

e Hence, Partitioned Role-Based Access Control!

Copyright © 2013 Cogent Logic Ltd.

e X.509 provides two types of attribute certificates for PRBAC:

e Role-Specification Attribute Certificates describe roles and their
privileges—for resources.

e Role-Assignment Attribute Certificates describe entities and their
assigned roles—for subjects.

e Security Policy Information Files (SPIF)
e Security Labels
e Public-Key Certificates

e Security Domain is administered by an Attribute Authority (AA)
e C(CAs issue public-key certificates

e AAsissue attribute certificates

Copyright © 2013 Cogent Logic Ltd.

Cogent Logic Ltd.

High Quality Hands-On Training
for
Software Developers

Copyright © 2013 Cogent Logic Ltd.

 Android Training Courses

* Developing Mobile Applications with Android is for Java programmers
wishing to get up to speed on Android development.

e Software Development with Java is for programmers wishing acquire a
thorough grounding in Java.

e 105 Training Courses

o Developing Mobile Applications with 108 is for Objective-C programmers
wishing to get up to speed on iOS development.

e Software Development with Objective-C is for programmers wishing acquire
a thorough grounding in Objective-C.

Copyright © 2013 Cogent Logic Ltd.

Ruby on Rails Training Courses

o Developing Web Applications with Ruby on Rails is for Ruby programmers
wishing to get up to speed on Rails development.

e Software Development with Ruby is for programmers wishing acquire a
thorough grounding in Ruby.

Copyright © 2013 Cogent Logic Ltd.

